# Some Generalized Differentiation Formulae for $\bar{H}$-Function 

${ }^{1}$ Neelam Pandey, ${ }^{2}$ Jai Pakash Patel<br>${ }^{1,2}$ Department of Mathematics, Govt. Model Science College, Rewa, (M.P.), India, 486001


#### Abstract

This paper contains differentiation formulae for H-function. The generalize results established by Devra and Raithie [5; 107-113] special cases include known and new formulae for various special functions such as $\overline{\mathbf{H}}$-function, generalized Wright hypergeometric function. Mathematics Subject Classification: 33A20; 26A33


Keywords: $\overline{\boldsymbol{H}}$-function, $\mathbf{H}$-function, Wright hypergeometric function.

## I. INTRODUCTION

Inayat -Hussain (1987a) introduced generalization form of Fox's $\overline{\mathrm{H}}$-function which is popularly known as $\overline{\mathrm{H}}$-function.
Now $\overline{\mathrm{H}}$-function stands on fairly firm footing through the research contribution of various authors like Inayat- Hussain (1987b), Rathie (1993), Gupta \& Soni (2005), Chaurasia \& singh (2010), Agrawal \& Mehar (2012), Marko, Pandey \& Sukla (2013).

The $\overline{\mathrm{H}}$-Function is defined and represented in the following manner [2; 10].

$$
\begin{array}{r}
\bar{H}_{p, q}^{m, n}[z]=\bar{H}_{p, q}^{m, n}\left[\left.z\right|_{\left(b_{j}, B_{j}\right) 1, m, b_{j}} ^{\left.\left.\left(a_{j}, A_{j} ; \alpha_{j}\right)_{1, n},\left(b_{j}, B_{j} ; \beta_{j}\right)_{j}\right)_{m+1, q}\right)}\right. \\
=\frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} \theta(s) z^{s} d s . \tag{1}
\end{array}
$$

where $\theta(s)$ is given by

$$
\begin{equation*}
\theta(s)=\frac{\Pi_{j=1}^{m} \Gamma\left(b_{j}-B_{j} s\right) \Pi_{j=1}^{n} \Gamma^{\alpha_{j}}\left(1-a_{j}+A_{j} s\right)}{\Pi_{j=m+1}^{q} \Gamma^{\beta_{j}}\left(1-b_{j}+B_{j} s\right) \Pi_{j=n+1}^{p} \Gamma\left(a_{j}-A_{j} s\right)} . \tag{2}
\end{equation*}
$$

Also
(i) $z \neq 0$.
(ii) $i=\sqrt{ }(-1)$.
(iii) $\mathrm{m}, \mathrm{n}, \mathrm{p}, \mathrm{q}$ are integers satisfying $0 \leq m \leq q, 0 \leq n \leq p$.
(iv) L is a suitable contour in the complex plane.
(v) An empty product is interpreted as unity.
(vi) $A_{j}, j=1, \ldots, p ; B_{j}, j=1, \ldots, q ; \alpha_{j}, j=1, \ldots, n ; \beta_{j}, j=1, \ldots, q$ are real positive numbers.
(vii) $a_{j}, j=1, \ldots p$ and $b_{j}, j=1, \ldots, q$ are all complex numbers.

The nature of contour $L$, sufficient conditions of convergence of defining integral (1) and other details about the $\overline{\mathrm{H}}$ Function can be seen in the paper [8].
The behaviour of the $\overline{\mathrm{H}}$-function for small values of jzj follows easily from a result given by [12]:

$$
\bar{H}_{p, q}^{m, n}[z]=O\left(|z|^{\alpha}\right)
$$

where

$$
\begin{gathered}
\alpha=\min _{1 \leq j \leq m} \operatorname{Re}\left(\frac{b_{j}}{\alpha_{j}}\right),|z| \rightarrow 0 . \\
\Omega=\sum_{j=1}^{m}\left|\beta_{j}\right|+\sum_{j=1}^{n}\left|\alpha_{j} A_{j}\right|-\sum_{j=m+1}^{q}\left|\beta_{j} B_{j}\right|-\sum_{j=n+1}^{p} A_{j}>0 \text { and } 0<|z|<\infty .
\end{gathered}
$$

If $f(x)$ is a linear polynomial in $x$ and $D$ represents $\frac{d}{d x}$ then

$$
\begin{equation*}
f(D x) x^{\alpha}=f(\alpha+1) x^{\alpha} \tag{3}
\end{equation*}
$$

The ${ }_{p} \bar{\psi}_{q}(z)$ function will be defined and represented [8] as follows

$$
{ }_{p} \bar{\psi}_{q}\left[\begin{array}{l}
\left(a_{j}, A_{j} ; \alpha_{j}\right)_{1, p}  \tag{4}\\
\left(b_{j}, B_{j} ; \beta_{j}\right)_{1, q}
\end{array} ; z\right]=\bar{H}_{p, q+1}^{1, p}\left[-z /_{(0,1),\left(1-b_{j}, B_{j} ; \beta_{j}\right)_{1, q}}^{\left(1-a_{j}, A_{j} ; \alpha_{j}\right)_{1, p}}\right]
$$

The function ${ }_{p} \bar{\psi}_{q}(z)$ is termed as generalized Wright hypergeometric function because it gives ${ }_{p} \psi_{q}$ for $A_{j}=1, j=1, \ldots, p ; B_{j}=1, j=1, \ldots, q$ in it.

An important special case of ${ }_{p} \bar{\psi}_{q}(z)$ that generalizes several special functions of practical importance is given as

$$
{ }_{p} \bar{F}_{q}\left[\begin{array}{l}
\left(a_{j}, 1 ; \alpha_{j}\right)_{1, p}  \tag{5}\\
\left(b_{j}, 1 ; \beta_{j}\right)_{1, q}
\end{array} z\right]=\frac{\prod_{j=1}^{q}\left\{\Gamma\left(b_{j}\right)\right\}^{\beta_{j}}}{\prod_{j=1}^{p}\left\{\Gamma\left(a_{j}\right)\right\}^{\alpha_{j}}} \bar{H}_{p, q+1}^{1, p}\left[-z /_{(0,1),\left(1-b_{j}, 1 ; \beta_{j}\right)_{1, q}}^{\left(1-a_{j}, 1 ; \alpha_{j}\right)_{1, p}}\right]
$$

The function ${ }_{p} \bar{\psi}_{q}(z)$ reduces to the well known ${ }_{p} \psi_{q}(z)$ for $\alpha_{j}=1, \ldots, p ; \beta_{j}=1, j=1, \ldots, q$ in it.
In this paper for the sake of brevity we shall use the following contracted notation for $\bar{H}$ function in (1).
where
A stand for $\left(a_{j}, A_{j} ; \alpha_{j}\right)_{1, n}, \mathbf{B}$ stand for $\left(b_{j}, B_{j}\right)_{1, m}$
$\mathbf{C}$ stand for $\quad\left(a_{j}, A_{j}\right)_{n+1, p}, \quad \mathbf{D}$ stand for $\left(b_{j}, B_{j} ; \beta_{j}\right)_{m+1, q}$.

## II. MAIN RESULTS

$$
\left.\left.\begin{array}{c}
{\left[D\left(a x^{v}+b\right)-\lambda_{1}\right] \ldots\left[D\left(a x^{v}+b\right)-\lambda_{r}\right]\left\{\left(a x^{v}+b\right)^{\alpha} \bar{H}_{p, q}^{m, n}\left[z\left(a x^{v}+b\right)^{h} / \mathbf{A}, \mathbf{C}_{\mathbf{B}}\right]\right\}} \\
\mathbf{B}, \mathbf{D} \tag{6}
\end{array}\right]\right\}
$$

provided $h>0$ and $a, b$ are complex numbers, $r$ is a positive integers $\cdot \lambda_{i}=a c_{i}$ where $a$ and $c_{i}$ are not simultaneously zero, and $i=1, . ., r$.

Some Generalized Differentiation Formulae for $\overline{\mathrm{H}}$-Function
Proof: Taking L.H.S. of (6) and using definition of $\overline{\mathrm{H}}$-function (1) and (2), operating under the integral sign using (3),the expression becomes

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 2, Issue 2, pp: (18-23), Month: October 2014 - March 2015, Available at: www.researchpublish.com

$$
a^{r}\left(a x^{v}+b\right)^{\alpha} \frac{1}{2 \pi i} \int_{L} \theta(s)\left[\alpha+h s+1-c_{1}\right] \ldots\left[\alpha+h s+1-c_{r}\right] z^{s}\left(a x^{v}+b\right)^{h s} d s
$$

Expressing $\left(\alpha+h s+1-c_{j}\right)$ as

$$
\left(\alpha+h s+1-c_{j}\right)=\frac{\Gamma\left(\alpha+h s+2-c_{j}\right)}{\left(\alpha+h s+1-c_{j}\right)}, \text { for } j=1, \ldots, r
$$

and interpreting with the help of (1), the result follows.
Differentiation under the integral sign used in the proof is valid, provided
(i) $\theta(s) z^{s}\left(a x^{v}+b\right)^{\alpha+h s}$ is continuous function of $x$ and $s$.
(ii) $\theta(s)\left(\alpha+h s+1-c_{1}\right) \ldots\left(\alpha+h s+1-c_{r}\right) z^{s}\left(a x^{v}+b\right) \alpha+h s$ is continuous function of $x$ and $s$.
(iii) $\int_{L} \theta(s) z^{s}\left(a x^{v}+b\right)^{h s} d s$ converges.
(iv) $\int_{L} \theta(s)\left(\alpha+h s+1-c_{1}\right) \ldots\left(\alpha+h s+1-c_{r}\right) z^{s}\left(a x^{v}+b\right)^{\alpha+h s} \alpha^{h s}$ is converges uniformly with respect to $x$.
The conditions on continuity are clearly satisfied and conditions on convergence are satisfied when the L.H.S. of (6) exists.
Special case: When the $\lambda^{\prime} s$ are in the arithmetic progression (6) takes the following form-

$$
\begin{gather*}
{\left[D\left(a x^{v}+b\right)-\lambda\right]\left[D\left(a x^{v}+b\right)-\lambda+k\right] \ldots\left[D\left(a x^{v}+b\right)-\lambda+(r-1) k\right]} \\
\cdot\left\{\left(a x^{v}+b\right)^{\alpha d+c-1} \bar{H}_{p, q}^{m, n}\left[z\left(a x^{v}+b\right)^{h d} / \begin{array}{l}
\mathbf{A}, \mathbf{C}, \mathbf{D}
\end{array}\right]\right\} \\
=a^{r} d^{r}\left(a x^{v}+b\right)^{\alpha d+c-1} \bar{H}_{p+1, q+1}^{m, n+1}\left[z\left(a x^{v}+b\right)^{h d} / \stackrel{(1-r-\alpha, h ; 1), \mathbf{A}, \mathbf{C}}{\mathbf{B}, \mathbf{D},(1-\alpha, h ; 1)}\right] \tag{7}
\end{gather*}
$$

provided $d \neq 0, h>0$ a and b are complex number, r is a positive integer, $\lambda=a c, k=a d$, a and c are not simultaneously zero.

Proof: Taking L.H.S. of (7) and using (1), where $\theta(s)$ is given by (2), we have operating under the integral sign using (3), the expression becomes

$$
\begin{gathered}
a^{r} d^{r}\left(a x^{v}+b\right)^{2 d+c-1} \frac{1}{2 \pi i} \int_{L} \theta(s)[\alpha+h s+h s][\alpha+h s+1] \\
\ldots[\alpha+h s+r-1] z^{s}\left(a x^{v}+b\right)^{h d s} d s
\end{gathered}
$$

Expressing

$$
(\alpha+h s)(\alpha+h s+1) \ldots(\alpha+h s+r-1)=\frac{\Gamma(\alpha+h s+r)}{\Gamma(\alpha+h s)}
$$

and interpreting with the help of (1), the result follows when $\lambda_{1}=\lambda_{2}=\lambda_{3}=\ldots .=\lambda_{r}=\lambda(6)$ becomes

$$
\begin{align*}
& {\left[D\left(a x^{v}+b\right)-\lambda\right]^{r}\left\{\left(a x^{v}+b\right)^{\alpha+c-1} \cdot \bar{H}_{p, q}^{m, n}\left[z\left(a x^{v}+b\right)^{h} / \underset{\mathbf{B}, \mathbf{D}}{\mathbf{A}, \mathbf{C}_{1}}\right]\right\} } \\
= & a^{r}\left(a x^{v}+b\right)^{\alpha+c-1} \bar{H}_{p+r, q+r}^{m, n+r}\left[z\left(a x^{v}+b\right)^{h} / \frac{(-\alpha, h ; 1)_{1, r}, \mathbf{A}, \mathbf{C}}{\mathbf{B}, \mathbf{D},(1-\alpha, h ; 1)_{1, r}}\right] \tag{8}
\end{align*}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 2, Issue 2, pp: (18-23), Month: October 2014 - March 2015, Available at: www.researchpublish.com provided $h>0, a$ and $b$ are complex numbers, $r$ is a positive integer.
when $c=0,(8)$ reduces to

$$
\left.\begin{array}{rl} 
& {\left[D\left(a x^{v}+b\right)-\lambda\right]^{r}\left\{\left(a x^{v}+b\right)^{\alpha-1} \cdot \bar{H}_{p, q}^{m, n}\left[z\left(a x^{v}+b\right)^{h} / /_{\mathbf{B}, \mathbf{D}}^{\mathbf{A}, \mathbf{C}^{2}}\right]\right\}} \\
= & a^{r}\left(a x^{v}+b\right)^{\alpha-1} \bar{H}_{p+r, q+r}^{m, n+r}\left[z\left(a x^{v}+b\right)^{h} /(-\alpha, h, 1)_{1, r}, \mathbf{A}, \mathbf{C},(1-\alpha, h ; 1)_{1, r}\right. \tag{9}
\end{array}\right]
$$

provided $h>0, a$ and $b$ are complex numbers, $r$ is a positive integer.
Specializing the parameters in (6) and using 4, (6) reduces to

$$
\begin{gather*}
{\left[D\left(a x^{v}+b\right)-\lambda_{1}\right] \ldots\left[D\left(a x^{v}+b\right)-\lambda_{r}\right]\left\{\left(a x^{v}+b\right)^{\alpha} \cdot p \bar{\psi}_{q}\left[\begin{array}{l}
\left.\left(a_{j}, A_{j} ; \alpha_{j}\right)_{1, p}, B_{j} ; \beta_{j}\right)_{1, q}
\end{array} z\left(a x^{v}+b\right)^{h}\right]\right\}} \\
 \tag{10}\\
=a^{r}\left(a x^{v}+b\right)_{p+r}^{\alpha} \bar{\psi}_{q+r}\left[/_{\left(1+\alpha_{j}-c_{j}, h ; 1\right)_{1, r},\left(b_{j}, B_{j} ; \beta_{j}\right)_{1, q}}^{\left(\alpha-c_{j}+2, h ; 1\right)_{1, r},\left(a_{j}, A_{j} ; \alpha_{j}\right)_{1, p}}\right]
\end{gather*}
$$

provided $h>0, a$ and $b$ are complex numbers, $r$ is a positive integer. $\lambda_{i}=a c_{i}$ where $a$ and $c_{i}$ are not simultaneously zero, and $i=1, . ., r$.

Further specializing the parameters and using (5), (6) reduces to

$$
\begin{align*}
& {\left[D\left(a x^{v}+b\right)-\lambda_{1}\right] \ldots\left[D\left(a x^{v}+b\right)-\lambda_{r}\right]\left\{\left(a x^{v}+b\right)^{\alpha}{ }_{p} \bar{F}_{q}{ }_{q}\left[\begin{array}{l}
\left.\left(a_{j}, 1 ; 1 ; \beta_{j}\right)_{1, q}\right) \\
\left(b_{j}, p\right.
\end{array} z\left(a x^{v}+b\right)\right]\right\}} \\
& \quad=a^{r} \prod_{j=1}^{r}\left(\alpha-c_{j}+1\right)\left(a x^{v}+b\right)^{\alpha}{ }_{p+r} \bar{F}_{q+r}\left[/_{\left(1+\alpha_{j}-c_{j}, 1 ; 1\right)_{1, r},\left(b_{j}, 1 ; \beta_{j}\right)_{1, q}}^{\left(\alpha-c_{j}+2,1 ; 1\right)_{1, r},\left(a_{j}, 1 ; \alpha_{j}\right)_{1, p}}\right] \tag{11}
\end{align*}
$$

provided $h>0, a$ and $b$ are complex numbers, $r$ is a positive integer. $\lambda_{i}=a c_{i}$ where $a$ and $c_{i}$ are not simultaneously zero, and $i=1, . ., r$.

When $r=1,(11)$ reduces to

$$
\begin{align*}
& {\left[D\left(a x^{v}+b\right)-\lambda\right]\left\{\left(a x^{v}+b\right)^{\alpha} \cdot p \bar{F}_{q}\left[\begin{array}{l}
\left(a_{j}, 1 ; \alpha_{j}\right)_{1, p} \\
\left(b_{j}, 1 ; \beta_{j}\right)_{1, q}
\end{array} ; z\left(a x^{v}+b\right)\right]\right\} } \\
= & a(\alpha-c+1)\left(a x^{v}+b\right)_{p+1}^{\alpha} \bar{F}_{q+1}\left[\begin{array}{l}
(\alpha-c+2,1 ; 1),\left(a_{j}, 1 ; \alpha_{j}\right)_{1, p} \\
(1+\alpha-c, 1 ; 1),\left(b_{j}, 1 ; \beta_{j}\right)_{1, q}
\end{array}\right] \tag{12}
\end{align*}
$$

where $a$ and $b$ are complex numbers, $\lambda=a c$ where $a$ and $c$ are not simultaneously zero.
In $(6),(7),(8)$ and $(9)$ take $\alpha_{j}=1$, for $j=1, \ldots, n$ and $\beta_{j}=1$ for $j=m+1, \ldots, q$ to obtain the corresponding formulas for H -function of Fox as

$$
\begin{gather*}
{\left[D\left(a x^{v}+b\right)-\lambda_{1}\right] \ldots\left[D\left(a x^{v}+b\right)-\lambda_{r}\right]\left\{\left(a x^{v}+b\right)^{\alpha} H_{p, q}^{m, n}\left[z(a x+b)^{h} / /_{\left.\left(b_{j}, B_{j}\right)_{1, q}\right]}^{\left(a_{j}, A_{j}\right) 1_{1, p}}\right]\right\}} \\
=a^{r}\left(a x^{v}+b\right)^{\alpha} H_{p+r, q+r}^{m, n+r}\left[z(a x+b)^{h} /{ }_{\left(b_{j}, B_{j}\right)_{1, q},\left(c_{j}-\alpha, h\right)_{1, r}}^{\left(c_{j}-\alpha-1\right)_{1, r},\left(a_{j}, A_{j}\right)_{1, p}}\right] \tag{13}
\end{gather*}
$$

provided $h>0, a$ and $b$ are complex numbers, $r$ is a positive integers. $\lambda_{i}=a c_{i}$ where $a$ and $c_{i}$ are not simultaneously zero, and $i=1, . ., r$.

Some Generalized Differentiation Formulae For $\overline{\mathrm{H}}$-Function

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 2, Issue 2, pp: (18-23), Month: October 2014 - March 2015, Available at: www.researchpublish.com

$$
\begin{gather*}
{\left[D\left(a x^{v}+b\right)-\lambda\right]\left[D\left(a x^{v}+b\right)-\lambda+k\right] \ldots\left[D\left(a x^{v}+b\right)-\lambda+(r-1) k\right]\left\{\left(a x^{v}+b\right)^{\alpha d+c-1}\right.} \\
\left.. \bar{H}_{p, q}^{m, n}\left[z\left(a x^{v}+b\right)^{h} d /_{\left(b_{j}, B_{j}\right)_{1, q}}^{\left(a_{j}, A_{j}\right) 1, p}\right]\right\} \\
=a^{r} d^{r}\left(a x^{v}+b\right)^{\alpha d+c-1} \bar{H}_{p+1, q+1}^{m, n+1}\left[z\left(a x^{v}+b\right)^{h d} /_{\left(b_{j}, B_{j}\right) 1, q,(1-\alpha, h)}^{(1-r-\alpha),\left(a_{j}, A_{j}\right), p}\right] \tag{14}
\end{gather*}
$$

provided $d \neq 0, h>0, a$ and $b$ are complex number, $r$ is a positive integer, $\lambda=a c, k=a d$, $a$ and $c$ are not simultaneously zero.

$$
\begin{align*}
& {\left[D\left(a x^{v}+b\right)-\lambda\right]^{r}\left\{\left(a x^{v}+b\right)^{\alpha+c-1} H_{p, q}^{m, n}\left[z\left(a x^{v}+b\right)^{h} /_{\left(b_{j}, B_{j}\right)_{1, q}}^{\left(a_{j}, A_{j}\right)_{1, p}}\right]\right\} } \\
= & a^{r}\left(a x^{v}+b\right)^{\alpha+c-1} H_{p+r, q+r}^{m, n+r}\left[z\left(a x^{v}+b\right)^{h} /_{\left(b_{j}, B_{j}\right)_{1, q},(1-\alpha, h)_{1, r}}^{(-\alpha, h)_{1, r},\left(a_{j}, A_{j}\right)_{1, p}}\right] \tag{15}
\end{align*}
$$

provided $h>0, a$ and $b$ are complex numbers, $r$ is a positive integer.

$$
\begin{align*}
& {\left[D\left(a x^{v}+b\right)^{r}\right]\left\{\left(a x^{v}+b\right)^{\alpha-1} H_{p, q}^{m, n}\left[z\left(a x^{v}+b\right)^{h} /_{\left(b_{j}, B_{j}\right)_{1, q}}^{\left(a_{j}, A_{j}\right)_{1, p}}\right]\right\} } \\
= & a^{r}\left(a x^{v}+b\right)^{\alpha-1} H_{p+r, q+r}^{m, n+r}\left[z\left(a x^{v}+b\right)^{h} / /_{\left(b_{j}, B_{j}\right)_{1, q},(1-\alpha, h)_{1, r}}^{(-\alpha, h)_{1, r},\left(a_{j}, A_{j}\right)_{1, p}}\right] \tag{16}
\end{align*}
$$

provided $h>0, a$ and $b$ are complex numbers, $r$ is a positive integer.
$\operatorname{In}(12)$, put $\alpha_{j}=\beta_{j}=1$ to get the following result-

$$
\begin{align*}
& {\left[D\left(a x^{v}+b\right)-\lambda\right]\left\{\left(a x^{v}+b\right)^{\alpha}{ }_{p} F_{q}\left[\begin{array}{l}
\left(a_{j}\right)_{1, p} \\
\left(b_{j}\right)_{1, q}
\end{array} z\left(a x^{v}+b\right)\right]\right\} } \\
= & a(\alpha-c+1)\left(a x^{v}+b\right)_{p+1}^{\alpha} F^{q+1}\left[/_{(1+\alpha-c),\left(b_{j}\right)_{1, q}}^{(\alpha-c+2,1 ; 1),\left(a_{j}\right)_{1, p}}\right] \tag{17}
\end{align*}
$$

provided $a$ and $b$ are complex numbers, $\lambda=a c, a$ and $c$ are not simultaneously zero.

By specializing the parameters in (17) a number of other results involving various otherspecial functions can be obtain.

## ACKNOWLEDGEMENTS

Our sincere thanks are due to Professor C.K. Sharma (A.P.S.University Rewa (M.P.)) whose numerous suggestions were responsible for bringing out the paper in its present form.

## REFERENCES

[1] Praveen Agrarwal and Chand Mehar : New Finite Integrals involving product of $\overline{\mathrm{H}}$-function and Srivastava polynomial, Asian Journal of Mathematics and statistics, 5(4) (2012), 142-149.
[2] R.G. Buschman and H.M. Srivastava: The $\overline{\mathrm{H}}$ function associated with a certain class of Feyman integrals, J. Phy. A. Math .Gen. (1990), 4707-4710. 6 Neelam Pandey and Jai Prakash Patel
[3] V.B.L. Chaurasia and Jagdav : Fractional-Calculus results pertaining to special functions, Int. J. Contemp. Math. Sci., 5(48) (2010), 2381-2389.
[4] R.C. Singh Chandel and Vishwakarma : Fractional derivatives of certain generalized hypergeometric functions of several variables, J. math. Ana. Appl., 184 (1994), 560-572.
[5] H.M. Devra and A.K. Rathie :Vijnana Parishad Anusandhann Patrika, 36 (1993), 107-113.

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 2, Issue 2, pp: (18-23), Month: October 2014 - March 2015, Available at: www.researchpublish.com
[6] Charles Fox: The G and H -functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395 429.
[7] K.C. Gupta and V.C. Jain: On the derivative of the H -function, Proc. Nat. Acad. Sci. India, 38 (1968), 162.
[8] K.C. Gupta and R.C. Soni: On a basic formula involving the product of $\bar{H}$-function, J. Rajasthan Acad. Phy. Sci., 4(3) (2006), 157-164.
[9] A.A. Inayat-Hussain : New properties of hypergeometric series derivable form Feynman integrals: I. Transformation and reduction formulae, J. Phys. A. Math. Gen., 20 (1987a), 4109-4117.
[10] A.A. Inayat-Hussain : New properties of hypergeometric series derivable form Feynman integrals II. A generalization of the H- function, J. Phys. A. Math. Gen., 20 (1987b), 4119- 4128.
[11] D.S. Marko, S. Pandey and M. k.Sukla : On some new integrals relation of $\bar{H}$-function, Res.J. Mathematical and statistical Sciences. 1(3) (2013), 21-22.
[12] A.K. Rathie : A new generalization of generalized hypergeometric functions, , Le Math- ematiche Fasc. II, 52 (1997), 297-310.
[13] H.M. Srivastava and S.P. Goyal : fractional derivatives of H-function of several vari-ables., J.Math. Ana. App., 112 (1985), 641-651.

